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THE INERTIA COEI?I?HXENIWOF AN AIRSHIP IN A FRIC’NONLESS FLUID.

By H. BHBI.W,

SUMMARY.

The foUowing inrestigaticm of the apparent inertia of an airship hull was made at the
‘request of the h~atiomd Advisory Cwnm.ittee for Aeronautics. The exact solution of the aero-
dynamicaI probIem has been studied for hulk of -wrious shapes and special attention has been
given to the case of an eJlipsoidaI hull. In order that the results for this kst case may be
readily adapted to other cases, they are expressed in terms of the area and perimeter of the
Iargest cross section perpendicular to the direction of motion by means of a formula involving
a coefficient E which varies onIy slowIy when the shape of the hull is ch~~ed, being 0.667
for a circukw or elliptic disk, 0.-5 for a sphere, and about. 0..25 for a spheroid of fineness ratio ‘7.
For rough purposes it is sufficient to employ the coefEcients, originally found for ellipsoids, for
hulk ot herw-iw shaped. When more exact values of the inertia are needed, estimates may be
based on a stud-y of the way in which K varies with different characteristics and for such R
st udoy the new coefficient possesses some ad-rant ages over one which is defined with reference to
the voIume of fluid displaced.

The case of rotation of an airship huH has been in-instigated E&o and a coficient has
been dethed with the same advantages as the corresponding coefEcient for rectilinear motion.

—

1. LNCCRODWTION.

It follows from Greenzs anaIysis that when an eHipsoidal body moves in an infinite incom-
pressible inviscid fluid in such a way that the flow is everywhere of the irrot.atiomd, continuous
IIhderian type, the kinetic energy of the fluid produces an apparent increase ii the mass and
moments of inertia of the body. The terms mass and moment of inertia are used here in a
generaked sense because it, appears that. the apparent mass is generaHy different for different
directions of motion and the apparent moment. of inertia &fTerent for different aYes of spins
For this reason it seems better to speak of inertia coefficients, these being the constant coeffi-
cie~ts in the expression for the kirtet ic energy in terms of the component linear and angular
velocities reIative to z~es fixed in the body.

The idea of inertia coefEcients may be extended to bodies of any shape and to cases in
which there is more than one body or in which the fluid is Iimited by a boundary. Generalized
coefficients may be defined, too, for cases in which there is cimdation round some of the bodies
or boundaries and values can e-rent udly be obtained which shouId correspond closely to the
values of the inertia coefficients for the motion of a body in a tiscous fluid.

The inertia coefficients of airship hulls are useful for the interpretation of running tests
and in fact for a dynamical stud-y of arty type of motion of an airship, whether steady or unsteady.
The coefficients are needed, for instance, in the study of the stability of an airship by the method
Of sma~ oscillations I and for a computation of the resulting momenta in ~arious types of steady

motion.
For the case of motion of transition with ~elocity U the kinetic energy, T, of the fluid

is usualIy expressed in the form
T= $LmtO’

where m is the mass of the fluid dispIaced by the body and k is a numerical coefikient whose
value is known in certain cases. A -due of k for an airship hull is generally found by choos-

IForthe literature on this subject referents may bemade to a paper by R. Jones and D. H. mm% British ~WOnantid- Research 13uI-
roittee, R. M. 751. JtELe,1521.
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ing an dipsoid with nearly the same form as the hull and calculating the value of k for the
ellipsoid. This method is to some extent unsatisfactory because the coefficient k varies con-
siderably with the shape, being infinite for a circulm disk, 0.5 for a sphere, and O.O@ for a
prolate spheroid of fineness ratio 6. For this reason an alternative method is proposed in which
the kinetic energy of the fluid is expressed in terms of quantities relating to the master section
of the hull by means of a formulti involving a numerical coefficient K -which varies only slowly
with other characteristics such as the fineness ratio. The proposed expression is

where N denotes the area and i the perimeter of the greates~ cross section of the hull by a plane
perpendicular to th~ direction of motion; P is the density of the fluid m-d K the new coei%cient
which is apparently greatest for a circular or elliptic disk,

In the ease of a spheroid moving in the direction of its axis of symmetry the way in which
k and 1 vary with the fineness ratio is shown in Figure 1. In Figure 2 the corresponding curves
have been drawn for a hull bounded by portions of two spheres cutting each other or~hogonally.
The high value of- K when the two spheres aie equal is undoubtedly caused by the presence of
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the narrow waist, while the sudden drop in value indicates the effect of a lack of fore and aft
symmetry. The curves for K have an advantage over those for kin indicating more clearly the
effect of a change in shape. The effect of a flattening of the nose of the hull has beeu studied
by considering the case of a surface of revolution whose meridian curve is a lima~on. The effect
is only slight, as is seen from the table in Section IV. In the case of an airship hull spinning about
a central axis in a plane of symmetry the kinetic energy can also be expressed in terms of general
characteristics by using a formula involving a coefficient K, wh]ch varies only slowly with
the shape. The proposed formula is

where u, is the angular velocity about the axis of spin, which we take as the axis of x, L?xis the
maximum radius of gyration of a meridian section about the axis of z, Sy and SZ are the arens of
central sections perpendicular to the axes of y and z and Zis the perimeter of the meridian section
with &hegreatest perimeter, a meridian section being cut out by a plane through the axis of spin.

This formula has been constructed from the known formula for an ellipsoid wiLh the axes
of coordinates M principal axes. To adapt it to a hull of a different shape a suitable set of axes
must be chosen. The principal axes of inertia at the center .of gravity may, perhaps, be used
with ~dvrmtage.
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The coefficients k, K and K’ will now be computed in some cases in which the aerodynamical
problem is soluble. h particular they VW be computed for the fokrwing cases:

(1)

(2)

(,3)

(.4)

{ .5)

(6)

(7)

Disk moving axially.
Prolate spheroid moving longitudinally.
Prolate spheroid motig lat.eraIly.
Oblate spheroid moving in the direction of its axis of symmetry.
ObLate spheroid movi~ff at right angles to its axis of symmetry.
Solid formed by two orthogonal spheres.
Solid formed by the revolution of a lima~on about is axis of symmetry.

II, THE INERTIA COEFFICIENTS FOR AN E~LJ=’sOID. .

When the viscosity of the fluid is neglected and the motion is treated as irrotatiomd there
is no scale effect. This means that if Fe increase the ~e~ocity of the body in the ratio .s:1, keeping
its size constant, the ve~ocity at any point of the fluid charges in the same proportion. A
similar remark appIies to the case in which the body is spinning about an axis instead of rnm-i5g
with a simpIe motion of translation and in the more general case in -which a body has motions
of both trimsIation and rotation the kinetic energy, T, can be expressed in the form2

2 T=Au2 +-B# + C@+- 2AtVLC+2BrU.7L+2 Cruv+Ppz + Qqz+ Rrz +2P’gr + 2Q’rp +-2Wpq
-E2p (Fu+Gv-!-HwI] +2q (F’u+G’v+H’to) +2r(F’’u+G’’tz+ u~),~),

where (ul v, W) are the component ~eIocities of a point tised in the body and (p, q, r) are the
ang~ar ~elocitiw of the body about axes through this point that are likewise fixeci iu the body.

The coefficients h, B, C’, A’, B’, F, P, Q, l?, P’, Q’, l?’, F, G, H, F’, F“, G’, G“, W, H“ are
constants which are called the inertia-coqf% ieh of the body relative to these a--es. This &xpres-
sion for the kinetic energy has been used also in cases in which the velocities are variable and the
determination of the inertia coefficients is evidently a matter of some importance.

The inertia coe%icients are usuaIIy found by writing down the velocity potential or stream-
line function -which specifies the flow and calculating the kinetic energy by means of an integral
of type

~T= —P
r

**~
~ ‘ dn

over the surface of the body, # being the velocity potentiaI, P the density of the fluicl ancl dn
denotes an element of the normaI to the surface cLSdrwm into the fluid. A different -integral
may be used when the stream-line function is known, but in many cases integration is unneces-
sary, for Munk3 has remarked that in the case of a simple velocity of translation the fluid motion
ma-y be supposed to arise from a series of doublets and that the sum of the moments of all these
cloubIets has a component in the direction of motion which is proportional to the sum of the
kinetic energy of the fluid and the kinetic energy which the fluid displaced would ha-re if it moved
like a rigid body with the same wIoeity as the body. The sum of the masses of the fluid and
the fluid dispIaced has been calIed the complete mass.

The inertia-coefficients are w-elI known for the case of an ellipsoid with semiaxes a, b, c when
the axes of reference are the principaI axes of the ellipsoid. We have in fact’
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The complete coefficients of inertia for motion of translation are

.4*–9:m , B*=*, !9==.
“% 2–70

The coefficient k defined by the equ~tion

has been ta.bulate.d by Professor ~amb in a. number of cases.’ We have wtended his tables
and have aIso tabulated the coefficient K defined in I. The different special cases of an elIipsoid
will now be discussed.

1. Elliptic disk.—h this case k is infinite buh the kinetic energy is finite. To find an
expression for K we write

when a is small. Differentiating once with respect to a and n timeswith respect to c?, we get

sco

(–l)nn!
adh

=(–l)’~’ $”; nz’’+ l)+ , . .
(az+w (C2+A)’+’=A (– l)’ n!– ~,n+,

o
Hence

approximately} where 1 is the perimeter of the ellipse. with semi axes i? tind c. .lIemce finaliy wo

obtain
~T=~ p U%$’, ~==bc.

3X 1
andS

~=; =O.637 .

The distributio~l of doubIets may be found from the well-known expression for the potentiol
We have for an ellipsoid

Putting k = z’s and making z--@ we find Lhat the value of @ on the disk is

4 British Advisory Cormufttee far Aeronautics, R. ~rM. No. 6Z3, October (1918).
~In the case of an infinitely long strip bounded by two parslleI lines the value of K is 0.%9.
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This must be equaI to the % times the moment per unit area of the doublets in the neighbor-
hood of the point (0, y, z) of the disk. Hence the expression for the potential is equivalent to

and this formuIa show-s
energy is in this case

the way in which the pot.entiaI arises from the dou~lets. The compIete

in accordance -with MuuI/s theorem. To -rerify this resdt we put

then

With the ribo-re substitution the expression for the potentiaI may be written in the form

and may be compared with the corresponding expression for the oblzte spheroid. For the case
of the circular disk (b= c) the stream-iine function m~y be obtained by replacing z in the above
formula by – (y’ +s’). Tt%en an elliptic disk spins about the axis of y the kinetic energy is
given by

where f2Yis the angular _i_eIoeiby. In the case of a circular

The coefficient K’ thus has ihe due
@=:=o.318.

?. Prolate spiieroid.-b the case of a prolate spheroid
symmetry, -we have (Lamb, IOC.cit.)

~.
{

2(1J62:) ~log~e–ei
,

disk the kinetic energy is

Where e is the eccentricity of the meridian section and so

i5=c=a~11-e’
The Yelocity potential is

moving in the direction of its axis of

1
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By introducing the spheroidal coordinates

X= JIP{I y=u cos wjz=u sinw, u=h (1—#)~(f2- 1)*,7L=ae

we ma,y Writo this in the form

The veluci~~rput ential may also be expressed as a ddic ile integral

which indicates the way in }vhich it may be imagined to arise from L row of sourres an{] sinks
on the line joining the foci, This result may be obtained by writing

wld determining from the integral etluatiot~

Q,u-)=:h-s“ .f(s)ds
h((-s)

–1

Which is obtained bjr putting y = z =“0. ‘h integrfil equation is solved mos~ collvcnienlly by
using the well-known expansion

93
1

{–8=-E
(2TL+ 1) F’,(s) Q,(4-)

0
an(d the inkgml formula

s+1
o m&n

Pm(s) Pn(s)ds= ‘ ~ ~=n
–1

2 n+”l
It. is thus evident that.

~-k) =~,(s) ‘~.

The strength of the source associated With ~11elemen &MS is

Multiplying this by llx = O-lls and integrating With regard to s bet]vcwn – 1 rmd J, Jve get

The kinetic energy of the fluid
hallcl

plus the kinetic energy of the fluid disphtced is, on the other

%p ~ 1

[ z:.d~ac.~U2 1+

—. ._—

Thus Munk’s theorem is again confirmed.
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In the case of a prolate spheroid mov@ broadside on we have

and the relation between 1 and k is

z=&
.

where Z is the perimeter of the meridian section. The potentiaI +~ may be e.xpres.sed in the
forms

J

Xl
tlwy dk

‘$b=~_~o
(a’+x)*(b’+A)’

?.

Khere
x’ , Y’+~=l

a~+k kIP+k

vrhere

.It Doctor Mu&’s suggestion one may interpret these results with the aid of the idea of
complete momentum< i. e., ‘the momentum of the fluid pIue the momentum which the fluid
displaced by the body would have if it moved like a rigid body with the same veIotity as the
body.

I.&t X! and ~b denote the complete masses for mofiions partieI to the axes of z and y
respectively, then

~.= : X@bC (1 +k.) &=; x/Ja&? (1 +k~)

These equations show that when the compIete momentum is given the veIooity potential @
and the sources from which it arises are the same for a series of confocal spheroids.a This is
true for any ar@e of attack as is seen by superposition. This result is easiIy extended to the
ellipsoid, for w-e may write

w-here

—
$This is m extension to thcee dimensfi,ons& a theorem tbM hes been proved for the eLLiptieeyflnder. Cf. M& H. Mink, Xate.9 rm.Aero-

ciynmmieForces. Te&niwJ Note No. 10:, Xatfrmal .lclvi.sw CommItteo for Aeronautics.
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It is easily seen that 17is the same for a system of confocaI ellipsoids. This result may be
used to find an appropriate system of singularities distributed over the region bounded by a
real confocal eIlipse, the result is the same as that already found for the eIliptic disli.7

It is weI1 known that an elIipsoid has three focal conies, one of which is imaginary, and the
question ari~es whether there is more than one simple distribution of singularities which till
produce the potential. This question T@ be discussed in Section 111.

When a prolate spheroid is spinning with angular velocity Q, about the &xis of y, the
velocity potential @ is given by the formuke

nJ_l

where A is a constant to be determined by means of the boundary condition

E=-”,(z&xa
It is easily seen that

[

1+6 8 1A &z (2 – e’) log Fe–;– & = a’e’fl,

The energy may be expressed in terms of ‘the mass of the fluid displaced by means of the
formula

(the coefficient k’ having been tabulated by Lamb) or it may be expressed in terms of other
characteristics with the aid of our coefficient A?. The values of the various coefficients k and

K are given in Table I. The sties a and c are used to indicate the axis along which the
spheriod is moving. The coefficients ill and K’ refer to the case of rotation. It wilI be seen
that the coefficients K vary otiy slowly and the same remark applies to the product (1+ M
(i+ ?CJ. One advantage in using the coefficients &and &is that it k not necessary fio compute

the volume of the hti of the airship. Since K varies very slowly indeed when the fineness
ratio a/c is in the neighborhood of d, it folIoww that if we take K= 0.6 for an airship hulI we shall
noi be far wrong.

TLB~EI.

I I ~, ‘ =: =e!k, tK,!g (l.+’k’)
~c “ (I+?k)

-. ‘i -----1 ,.i::}0.509
---------------;:---i----;-:--- ----):---,----:-;------:~j;-~~ \

! 0.305 .............

I itiw ....... ........... ............ ......-;,;........... ....,....’yJ_ :?2

! ;~’ ~ “ ~ ~~ ;..~.:::.+.;l
.............

I ;:g;
1 0.045

6:97 0.036 ....w....l.....viq E% !:::::::: ~:.:.:::...1::::::::::;;:18.01 0.029
9.02 0.02* ::::::::::::: ::::::::::::::

1-

.............:.% :.:.:.......1.::::::::::-:
9:7 ] 0.:21 .....................------ O.p ~....b...j....~.................G.iti....

!_— j’ 2.=1 ].’.1’1.
In this table use has been made of the coefficients computed by Lamb. It shouId be

noticed that K.+ 2 Ko is very nearly constant for values of ~ lying between 1 and 0. This fact

may be used to compute KC when K~ is known using a formula such as

KO=.743 –;Ki

The value thus found is ~oo large for large values of ~ and too small for small values of ~ o

TCf. Lamb’s Hydr@mamics, ad cd., ch. V, p. 145.
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3. Ol)late spheroid.-In the case of an oblate spheroid moving with ~elocity 11 in the
direction of its a.tis of symmetry, which we take as axis of x, we have

[
%=$ l–*s@e]

where e is the eccentricity of the meridian section. k thx case

Introducing the spheroidal coordinates

z=7Q.tr, ?J=CJCos’w, z=cdsin’q CJ=h (l—pZ)* (’J=+l)*,7L=c@.
we may write

& = 4 (1–f cot-1~)
where

We also have

‘a=+i;’’’-’dsr+
R’=(y-h Cos W)’-E(Z-7M sin ‘m]’+d.

When an ablate spheroid moves with veIocity Tat right angles to its axis of symmetry
we have

,,=,&=q [sin-’ e – e%~]

and the relation between Iceand .lL is nor

The mIocity potentiaI & isgiven by the formuh

R=(y–ks cosw)2+ (z–hssbw)2+&, fi=ce=Jc’-a’
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k,, ii., .& I K., are given in TabIe 11,

TABLE II,

.

c k, Ka i. K. I
T

(l~ka)(1-I-W

~ :.} g.g :%& - O.L p
‘lE

0:702
i jlj ~w

0:641 0.310 p%l$gi
0803 0.571 0.233

0.587 0.174 0:474 j ilw
! 4:w o:8% 0.599 0.143 0.477

6.01 0.918
2.lM ~

0.EOo 0.1205 0.478 3.149
m 1.cm 0,637 0.(W o.W3 12” WI ‘_

When an oblate spheroid spins with angular veIocity COYabout the axis of y the velocity
potential 1#’ is given by the forrnuke

(7=
(C2– a2)2a?my

2 (C2– az) + (C2+ az) (70– aO)

!
C2+ U2

A 3—
_l g_g 7c2+a2

~Cos
1

-— = h?+.
Cz—a C C% ~/c2— a2

We dso have

HI. THE METHOD BASED ON THE USE OF SOURCES AND SINKS.

It was shown by stokes 8 that the veIocity potential for the irro~atiional motion of an
incompressible nonviscous fluid in the space outside a sphere of radius, a, moving with velocity
77,is the same as that of a doublet of moment 2mUa’ situated at the center of the sphere. This

resuIt has been generalized by Rankine,9 D. W. Taylorjlo FuhrmannJ~l Munk,12 and others, t}vu
sources of opposite signs at a finite dist ante apart giving stream lines shaped like an airship.

Munk has shown in a recent report that the i~lensity of the point source near one end of
an airship hull may be taken to be r2mU, where r is the radius of the greates~ section of the
ship and Ir the distance of the point source from the head of the ship. The total energy of
the fluid displaced is then

and the apparent increment of mass of the airship is, equivalent to about 2; per cent of the
mass of fluid displaced.

In this investigation the airship is treated as symmetrical fore and aft, tLe two sources
of opposite signs be-bg equidistant from the two ends and the contributions of the two sources
to the kinetic energy being equal. The final result is identical with that for an elongated

spheroid with a ratio of axes equal to 9.

,

$Cambr, Phil Trans., vol. 8 (1843). [Math. and Phys. Papers, Vol. L p. 17.]
9Phil.Trms.London(1871),p. 267.
MTrans.BritishInst.?7avd Architects, VOI.35(1894),P.385.
IIJabb, der MotorluMs&iff-Studieugesellscbaft, 1911-12.
u NationaI Ad~sory Committee for Aeromutim, Reports 114and H7 (1921].
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It is fihought that a Iack of fore and aft symmetry fl stiII further reduce the mdws of the
coefficients k and K. To get an idea of the effect of a Iack of symmetry we shall consider the
case of a solid bounded by portions of two orthogonal spheres. In this case, as is weII known,
the velocity potential may be derived from three collinear sources. We ma-y in fact write

where a and a’ are the radii of the iwo spheres (r, 6), (r’ d’), (B, 0) are polar coordinates re-
ferred to the three sources as poks, the angles being measured from the line joining the three
sources. If Q is a common point of the two spheres Ii! is measured from the foot of the per-
peudicuIar from Q on the line of centers, while r and r’ are measured from the centers of the two
spheres respectidy. The quantity p represents the distance of Q from the line of centers and is
given by the equation

111
~=s+z”

By means of Munk’s theorem we infer that the complete energy is given by the formda

2T=2rp [ag+a’’–p3]t=p=p (l+ii)VU2
where

is the vohme of the fluid dispIaced.
The fineness ratio, i. e., the ratio of the Iength to the greatest bre~dth, is

f=a‘a’‘2pa””
Some dues of 1 and K are given in Table ID and curves have been drawn in F&.re 2 to

show the effecti of %kck of fore and aft s-ymmet.ry. For a comparison we have given in Table
III the values of k and K for a spheroid of the same fieness ratio. The &oh wIue of K for
the two orthogonal spheres is undoubtedly due to the presence of a narrow -mkt. The sudden
drop in the value of K is probably due to the Iack of fore and aft symmetry. The coefftcienfi
Kshows the effecti of a change in shape much more cIeaxly than the coefllcient k.

0.313
0.315
0.329
a334
am
a44s
a4s
a5

a 5s97
o.513?3
0.470s
0.4509
0.4W3
a47I
O.&s
a5

0.243 am
............. -------- -----
...........................
--..!.?... ?-...:.??... -
-------- ..... .............
......------- -------------

0.5 0.5
, i

—

It appears from an examination of the case of the oblate spheroid that the motiort of air
round a moving surface of re~oIution can not always be derived from a number of sources at

real points on the ti. For the oblate spheroid the sources, or rather doublets, are in the
equatorial plane. It is possible, however, to repIaee these doublets by doublets at imaatiuy

points on the axis as the foIIovzing analysis w-W show.
~.~+---~
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If F(~, y, z)

1
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is a potential function, we have the equation ‘9

Pzr i%

IF[z, y–a cos u, m–u sin w] dw=~
I

F[2+ ifJCos .X, y, 2]m
Jo Jo

which holds under fairly general conditions. On account of this equation we may write

where

.
f(u) ‘.fI (@)=U (~~z– C+$ g (f7)= o U’z– a’)i

making the substitution

G COS X=& dX~a’-&= –d&

changing the order of integrationand making use of the equations

which are easily verified by means of the substitution

u’= P COS2o+ Jt.2sin’ 8,

we find that the potentials for the oblate spheroid in the three types of motion nmy be written
in the forms

s

h

+a= .$
of

U’L’-H d[ ; & = ~ ‘tdtz~s l?’
-h -h

where.

These formuk resemble those for the prolate spheroid.
A distribution of sources or doublets oyer the elliptic area bounded by R focal ellipse of an

ellipsoid may be replaced by a system of sources or. doublets at imaginary points in one of the
other planes of symmetry by making use of the equation .11

1$H,~e~e~~~,Amer. .Journ. of Mathematics, vol. 34(1912),p.83S. .
1~H.Bateman, 10C.cit., p. 336.
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which likewise holds under fairly general conditions when F’(z7 y] z) is a potential function
and a a~ arbitrary constant.

The theorem relating to the transformation of doubIets in a central plane into z series of
doublets at imaatiary points on the axis of symmetry maybe written in the general form

where khe functions~(m) and F(g) are connected by the integralequation

In order that Mun~’s theorem may be applicable to doublets at imagjmwy points as we]

as to doublets at real points we must have the equation

Xow

hence the formula is -rerified and the complete mass maybe calculated from doublets at imaginary
points by adding the moments and using Nunk’s formula.

N. CASES IN ‘iYEICH THE *MASS CAIN J3El?OUNDlVITH THE MD OF’SPECM HARMONIC FUNCTIONS

It is know-n that the potential problem may be sol~ed in cert.ati cases by ming series of
spheroidal, toroidd, bipolarj or dirdric.aI harmonics. Thus it may be solved for the spherical
bo}vl, anchor ring, two spheres, *S“and for the bodv formed by the revolution of a lima~on about
its axis of symmetry. The Iast czse is of some ~terestt, as it indicates the effect of a flatter@

(If the nose of an airship hull. Writing the equation of the Iima$on in the form

where ~ and 6 are polar coordinates, we find on making the substitutions

r Cose=x=t=—qz. rsin9=y=2gq

!2=
asinha asinx

b cosh r— COSx“
q=

cosh r— COSx

that the potential for motion parallel to the axis of symmetry is

MForr&eremcessee L&mb’s E@mdpmnics, WIcd., PP. W 1:9; and A. B- Bswt, H@~@H, C~btidge, lW VO1.~.
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wkere ~~ (s) and Q~ (s) are the two types of Legendre functions (zonal ~larmoni~) and P’m [s) ~

Q’m (s) we the derivatives of ~~ (s) and Q~ (s) respectively. The stream-line function 4 as found
by Basset is in our.notation.

m

E am+,(d p,
4= – ~o&’:cos~~=o (2m+3)P’m+l (s) m~l(msh a) P’~~l (cos X)SirIh2a sinzx

At a great distance from the origin we have the approximate expressions

Q’m+, (s)S=jj(2m+3) (m+l)’ (m+2)*pmJ
m.o

which give the sum of the moments of the doublek from which the potential arises. The
coefficients k amd K may now be calculated with the aid of Doctor hfunk’s theorem and an
incomplete tabIe of spheroidal harmonics which is in the author’s possession. We thus obtain
the values 16

TABLE IV.

la J “~ K ~ (wheroid)

m o.m Owl ! O..m.
L:5 0.527 0.5?7

;
0.512

1,10 0.54s 0.513 0.524
1.2 1.153 0.569 0.518 . 0..534
lil 1.154 0.573 0.523 0.$36

L155 0.578 0.527 i 0-=

.
K (spheroid)!

o.w
o.E02
o.E&5
0.507
0.507
0.507

The corresponding values for an obIate spheroid are given for com-
parison. The case in which ~= Z is particularlyintere&ing because

the limacon then has a point of undulation at the nose. When s<.2

the limacon curves inward at the front,as maybe seen from the dia-

grams in I?igure3, and the apparent mass is probably increased on
account of fluid being confked in the hollow. In calculating tlm fine-
ness ratio in such a case the length has been measured from the rear

to the point where the double tangent reeds the axis.

18The WIUCSfor the spheroid have been Ob~&tiedby interpoIatkm from Table ]1. Tbe vahms of k and E for the cmdicdd $-1 have km esti-
mated by extrapolation.


